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1 Introduction

Triggered by the financial crisis in 2008, the adequate prediction of future losses

gained increasing attention in the field of risk measurement. Volatile market times,

as observed in 2008 and 2009, stressed the assumptions of classical risk measurement

techniques and shifted away the interest from return prediction to the adequate

modeling of future volatility. For the practitioner as well as for the researcher, Value-

at-Risk (VaR) became a popular standard to translate financial market risk into a

single monetary risk figure. As it is mandatory for financial institutions to measure

and communicate risk in terms of VaR, nowadays, nearly all listed companies present

VaR figures in their annual reports to give an idea about their risk exposures.

As the modeling of VaR is widely discussed, the choice of marginal return dis-

tribution represents the balance point of VaR forecasting (see Jorion (2007) and

Berger & Missong (2013)). According to Angelidis et al. (2004) amongst others,

distribution functions which capture the fat tails of the marginal return distribution

adequately (as i.e. the t distribution does) outperform models based on the classi-

cal assumption of normally distributed returns in volatile market times. Moreover,

as the explicit modeling of the left tail of the distribution represents the scope of

VaR modeling, the application of Extreme Value Theory became rather promising.

Bekiros & Georgoutsos (2005), Brooks et. al (2005) and Berger (2013) confirm the

adequate VaR performance of Extreme Value Theory (EVT) applied to to financial

asset returns.

In this paper, we add to the excisting VaR literature and give innovative insight

into the information content which is needed to forecast VaR. We decompose return

series into different time scales and investigate the information content of each scale

with respect to VaR. Ramsey (2002) and Renaud et al. (2002) are among the first

ones who address the usage of wavelets in the field of finance. The advantage of

wavelet analysis lies in the fact, that financial return series can be analysed apart

of the choice of marginal distribution. As described by Murtagh et al. (2003), time-

scale decomposition results in wavelet coefficients for each scale and a reconstruction

of the original series is feasible.

Lo Cascio (2007) decomposes UK real GDP via wavelet to investigate the long-
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run structure of the data apart form external shocks. Cifter (2011) makes use of

the wavelet decomposition to determine the parameters for the Generalized Pareto

Distribution. Reboredo and Rivera-Castro (2014) analyse dependency between oil

prices and stock returns and Jammazi and Aloui (2012) combine wavelets with neural

networks to investigate crude oil prices. In the context of forecasting, parsimonious

wavelet decomposition is applied to filter the returns in order to measure denoised

dependency between the investigated assets: Boubaker and Sghaier (2012) apply

wavelet decomposition to show the stability of the applied dependency measures for

all time scales, He et al. (2012) use a multivariate wavelet denoising in order to in-

vestigate the dynamics of correlations for international markets as well as Khalfaoui

and Boutahar (2012) who investigate the dependency of indexes. Hence, wavelets

are explicitly used to model dependency between different time scales. However, the

reason for the main focus on dependency measurement is given as follows: As the

classical wavelet decomposition summarizes information at each scale, the amount

of data points decreases by each time-scale, and consequently, events of the original

series can not be located in larger time-scales, so that point forecasts are difficult to

achieve, since the data length varies by scale.

As independently explored by different authors using different notations, e.g.

Shensa (1991), Percival and Walden (2000) Starck et al. (2007), the ”undecimated

wavelet decomposition” approach is introduced to overcome the so called shift vari-

ance of the wavelet decomposition. So to say, the data length does not decrease by

time-scale, so that the localisation of an event is ensured for all time scales.

Based on the undecimated wavelet decomposition, in this paper, we explore in-

novative insight into the forecasting of VaR by decomposing the investigated return

series via wavelet technique. We decompose each return series into different time-

scales and analyse the information content of each scale by fitting generalized pareto

distribution (GPD) to each series in order to adequately model the relevant quan-

tiles. Moreover, we apply an extensive empirical study to investigate the necessary

information for daily VaR forecasts. We investigate VaR forecasts of the decom-

posed return series based on GPD and link the information of different time scales

via t copula. As a result, the relevant information for one day forecasts turns out to
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be included essentially in the short-run scales. This can be seen, by adding succes-

sively more information to the VaR forecast in order to improve the out-of-sample

forecasting quality of VaR forecasts.

The remainder of the paper is structured as follows: Section 2 presents the rele-

vant methodology. In section 3, we present the analysis of decomposed time series

and VaR forecasts and in section 4 we evaluate VaR forecasts via Out-of-Sample

performance. Section 5 concludes.

2 Methodology

2.1 Wavelet Decomposition

In this paper we use the redundant, discrete wavelet transform also known as the

Haar a trous wavelet decomposition as introduced by Murtagh et al. (2003). This

algorithm is based on the Haar wavelet decomposition, but in contradiction to this

approach, it is described by shift invariance.

As given in Murtagh et al. (2003), we need to perform successive convolutions

with the discrete low-pass filter h:

ci+1(k) =
+∞∑
l=−∞

h(l)ci(k + 2il). (1)

where the original time series r(t) represents the lowest scale c0(t). The low-pass

filter, h, is defined as h = (1/2, 1/2).

In order to obtain the wavelet coefficients wi we take the difference between two

successive smoothed series in the following way:

wi(k) = ci−1(k)− ci(k). (2)

It is to note, that we decompose the time series up to eight scales.

2.2 GJR-GARCH

Based on the decomposed return series, we standardize the decomposed residuals via

GARCH process. More concrete, we apply the GJR-Garch model (as introduced by

4



Glosten et al. (1993)) in order to take account for asymmetric shocks on volatility.

The Model is given by:

σ2
t = Ω + αε2t−1 + βσ2

t−1 + γ1(εt−t < 0)ε2t−1. (3)

In this context, γ takes account for the asymmetric reaturn behaviour which is

caused by negative shocks.

2.3 Extreme Value Theory

In order to model VaR for the return series, we assume both normally and t dis-

tributed returns as a benchmark for the subsequent empirical analysis. However, in

order to adequately model the marginal distribution of each individual scale, more

flexible return models are needed. Moreover, in the context VaR forecasts, the tail

behavior of scales matters. Therefore, using Extreme Value Theory (EVT) to model

exceptional returns (and using the empirical distribution for the ”interior” part of the

marginals) seems to be a sensible alternative. Based on the GJR-GARCH filtered

i.i.d. residuals, additionally to parametric distributions, the peaks over threshold

approach, will be applied to each scale. Consequently, the data that exceeds a pre-

defined threshold at level α, is modeled via the Generalized Pareto Distribution

(GPD). In the succeeding empirical analysis, α = 10% will be the threshold value.

So to say, the extreme observations in the tails of the empirical distribution are

modeled via EVT (see Longin and Solnik (2001)) and the cumulative distribution

function Fξ is given by:

F (x)ξ;β = 1− (1 + ξ
x

β
)

−1
ξ (4)

with x ≥ 0, β > 0 and ξ > −0, 5. In this context, x represent the exceedances,

ξ the tail index (shape) parameter and β the scale parameter respectively. Let

gξ,β denote the density function, Nu the number over the threshold u, and Xj the

observed values over the threshold u and Yj = Xj − u. Then the log likelihood is

given by:

lt =
Nu∑
j=1

ln gξ,β(Yi) (5)
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= −Nu ln β −
1 + 1

ξ

Nu∑
j=1

ln
(

1 + ξ
Yi
β

) , (6)

2.4 Copulas

In order to model joint distributions of the different time scales, we apply t-copulas

to adequately model VaR. Copulas got initially introduced to financial time series

by Embrechts et al. (2002) and represent a two step approach which separates the

choice marginal distribution from dependency modeling. However, this idea goes

back to Sklar‘s Theorem (1959), which ensures the separation between marginal

distribution and dependency:

Let r1, ....rn be random variables, F1, ..., Fn the corresponding marginal distributions

and H the joint distribution, then there exists a copula C: [0, 1]n → [0, 1] such that:

H(r1, ...., rn) = C(F1(r1), ...Fn(rn)) (7)

Conversely if C is a copula and F1, ..., Fn are distribution functions, then H (as

defined above) is a joint distribution with margins F1, ...Fn.

Due to the fact, that we need to model joint default probabilities of up to eight

scales, we focus on the application of elliptical copulas. However, in order to account

for tail dependency, we link the scales via t copula.

The t copula belongs to the family of elliptical copulas and is derived from the

multivariate t distribution.

The setup of the t copula is given by:

Ct(r1, ..., rn) = tρ,v(Φ−1(r1), ..., ,Φ−1(rn)) (8)

=
∫ Φ−1(r1)

−∞
...
∫ Φ−1(rn)

−∞

Γ
(
v+n

2

)
Γ
(
v
2

)
(vπ)n2 |ρ|

1
2

(
1 + 1

v
zTρ−1z

)− v+n
2
dz1...dzn (9)

in this setup tρ,v stands for the multivariate t distribution with correlation matrix

ρ and v degrees of freedom (d.o.f.). For v → ∞ the t distribution approximates

a Gaussian. To make parameter estimation feasible even for large portfolios, all

copula parameters are estimated in a two step maximum likelihood method as given

6



by Joe (1996). In the first step the GARCH parameters θ̂1 related to the univariate

margins are estimated by:

1.

θ̂1 = ArgMaxθ1

T∑
t=1

n∑
j=1

ln fj(rjt;θ1) (10)

Based on θ̂1 the t copula parameters θ̂2 are estimated in the second step using:

2.

θ̂2 = ArgMaxθ2

T∑
t=1

ln c(F1(r1t), F2(r2t), ...Fn(rnt); θ2, θ̂1). (11)

2.5 Value-at-Risk Forecasts

Within a VaR framework, we are able to compare different approaches by the out-

of-sample quality of VaR forecast.

Generally, VaR defines a maximum loss limit which will not be exceeded with

a given probability and is defined as the quantile at level α of the distribution of

portfolio returns:

V aRα = F−1(α). (12)

In a parametric setup, if we model VaR for univariate time series, the respective

quantiles are functions of the variances. Consequently, the respective quantiles of the

modeled portfolio variances can be directly translated into VaR (see Jorion (2007)).

Let α be the quantile, σ2
t the conditional variance, then VaR at time t + 1 is given

by: V aRt+1 = −α
√
σ2
t for elliptical distributions. For instance the 95% VaR of PF

return yt represents the parametric 5% quantile.
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Figure 1: t copula with gaussian margins: Empirical 95% Value-at-Risk

However, in the context of copulas, due to the flexibility regarding the univariate

marginal distribution functions, the estimated VaR at time t + 1 is not modeled

parametrically. Based on the fitted copula, 10.000 returns are simulated and the

VaR is simply the empirical quantile of the vector of simulated portfolio returns

based on the information available at time t (see figure 1).

2.6 Backtesting

In order to evaluate the VaR performance, let a VaR misspecification be defined by

the scenario in which the realized loss exceeds the VaR forecast. So that within the

applied VaR framework, the applied models based on the information of different

time scales can be evaluated by their empirical rate of VaR misspecifications via

Out of sample analysis (always benchmarked against the realized returns of the

underlying asset). Since for 95% VaR forecasts, we expect to observe 1% of VaR

misspecifications. Empirically, if we analyse VaR forecast for one year (250 trading
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days), we expect to observe 12 or 13 misspecifications. The next to subsections cover

the applied quality criteria of our analysis, whereas we refer to Campbell (2006) for

a thorough overview of VaR backtesting criteria.

Conditional Coverage

In order to investigate the absolute amount of misspecifications we apply the back-

testing criteria of unconditional coverage by Kupiec (1995). More concrete, we test

the null hypothesis, if the realized failure rate is in line with the expected failure

rate. The relevant test statistic LRUC is given by:

LRUC = −2ln[(1− p)T−NpN ] + 2ln[(1− (N/T ))T −N(N/T )N ] (13)

p stands for the percent left tail level, T for the total days and N for the number

of misspecifications. However, the null is given by H0 : p = 1/N whereas the test

statistic is χ2(1) distributed.

In addition to the amount of misspecifications, we focus on the clustering of VaR

breaches. Due to the fact that the 1/N strategy is not dynamic in terms of portfolio

weights, we analyse if the static strategy will be outperformed by the dynamic ones.

Moreover, we investigate whether risk concentration on low-volatile assets bears the

risk of VaR breaches which are not independently over time.

The test statistic, LRIND is given by Jorion (1998):

LRIND = −2ln[(1− π)(T00+T01)π(T01+T11)] + 2ln[(1− π0)T00πT01
0 (1− π1)T10πT11

1 ]. (14)

Let Tij be the number of observed values i followed by j. Whereas 1 represents a

misspecification and 0 a correct estimation. π represents the probability of observing

an exception and πi the probability of observing an exception conditional on state i.

Namely, we test the null hypothesis of independent VaR breaches over time, so that

a model which creates too many clustered misspecifications gets rejected. Analogue

to LRUC , the test statistic is χ2(1) distributed.
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Figure 2: Example: backtesting criteria for 95% VaR forecasts (1000 observations):

(left) Unconditional Coverage, (right) Independence

Figure 2 illustrates the backtesting criteria graphically. The graph on the left side

describes the cumulated rate of VaR misspecifcations for an example comprising

1000 days and illustrates the idea of the unconditional coverage criterion. The real-

ized amount of VaR misspecifications is benchmarked against the expected amount

(straight line). Further, the independence criterion (right side) penalizes clustered

VaR misspecifications if two misspecifications occur sequently. Based on both back-

tests, Christoffersen (1998) introduces the Conditional Coverage criterion as the sum

of both UC and IND:

LRCC = LRUC + LRIND. (15)

This test statistic follows a χ2(2) distribution and controls for both coverage rate

and clustering.

3 Empirical Analysis

The data set comprises daily return series of stocks which are listed in the Dow

Jones Industrial Average (DJIA). As we investigate the time from January 1st 2000

till September 30th 2013, due to its late listing in October 3rd in 2007, we excluded

VISA from our analysis for sake of consistency. Consequently, we analyse 3600

daily log returns of 29 assets. The descriptive statistics for all assets are given

in Table 1. All assets are described by an average rate of return close to zero,
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whereas Kurtosis, Jarque Bera and the QQ statistics indicate non-normality of the

return series. Interestingly, bank stocks as JP Morgan and Goldman Sachs show

the highest standard deviations (0,027 and 0,025 respectively), whereas the highest

losses are given by Home Depot (-0,339%), Procter & Gamble (-0,377%) and United

Technologies (-0,332%).

Mean Std Dev Max Min Skew Kurt JB-Stat Q Stat LM

3M 0,000 0,015 0,105 -0,094 0,057 8,094 2,1 115887,0 3576,2

AT&T 0,000 0,018 0,151 -0,135 0,096 9,318 398,6 118143,0 3568,2

AM EXP 0,000 0,025 0,188 -0,194 -0,007 11,733 11,6 117775,2 3571,5

BOEING 0,000 0,020 0,144 -0,194 -0,258 8,614 100,1 117970,2 3579,8

CATER 0,000 0,021 0,137 -0,157 -0,072 7,276 226,3 124074,9 3584,5

CHEVR 0,000 0,017 0,189 -0,133 0,066 15,026 259,1 123833,5 3584,0

CISCO 0,000 0,027 0,218 -0,177 0,177 10,623 12124,8 117941,9 3572,7

COCAC 0,000 0,014 0,130 -0,106 0,114 11,422 469,2 120343,7 3576,1

E I DU 0,000 0,019 0,109 -0,120 -0,180 8,248 622,8 101597,0 3550,8

EXXON 0,000 0,016 0,159 -0,150 0,063 13,894 311,5 124838,5 3581,3

GE 0,000 0,020 0,180 -0,137 0,017 10,984 102,7 123059,9 3580,5

GOLDS 0,000 0,025 0,235 -0,210 0,294 14,144 266,8 118995,0 3572,3

HOME 0,000 0,021 0,132 -0,339 -0,991 24,167 928,3 115497,2 3576,0

INTEL 0,000 0,025 0,183 -0,249 -0,475 11,206 15199,8 114745,9 3569,3

INTER 0,000 0,017 0,123 -0,169 -0,022 11,279 622,7 123842,8 3582,8

JP M 0,000 0,027 0,224 -0,232 0,262 14,945 68,2 102964,5 3532,8

JJ 0,000 0,013 0,115 -0,173 -0,567 20,063 693,2 112242,4 3570,1

MCD 0,000 0,016 0,090 -0,137 -0,196 9,113 342,4 126810,2 3588,4

MERCK 0,000 0,019 0,123 -0,312 -1,557 31,876 490,0 119511,8 3576,6

MS 0,000 0,020 0,179 -0,170 -0,146 12,399 12236,2 86496,6 3534,1

NIKE 0,001 0,020 0,134 -0,216 -0,546 14,885 454,8 121612,6 3586,7

PFIZER 0,000 0,017 0,097 -0,118 -0,297 8,264 200,2 124705,0 3579,1

P&G 0,000 0,015 0,097 -0,377 -4,870 125,870 119,8 122023,9 3579,3

TRAV 0,000 0,020 0,228 -0,201 0,329 17,854 998,9 115504,0 3574,0

UT 0,000 0,018 0,128 -0,332 -1,607 36,955 139,5 121136,5 3583,5

UNH 0,001 0,021 0,298 -0,206 0,272 22,407 177,1 121302,5 3584,7

VERI 0,000 0,017 0,137 -0,126 0,140 9,471 284,7 112518,0 3564,4

WAL 0,000 0,016 0,105 -0,093 0,196 8,607 1510,0 107502,8 3548,7

WD 0,000 0,020 0,148 -0,203 -0,059 11,901 1130,2 118845,7 3580,8

Table 1: Descriptive Statistics: All Assets

Further, to investigate the information content of the given return series, we

decompose each series into 8 time scales via Haar a trous wavelet decomposition.

Figure 3 exemplifies the wavelet decomposition for 3M and illustrates each scale1. As
1We illustrate the wavelet decomposition for 3M, since it is the first asset in DWJI, graphs for
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can be seen, scale 1 represents the short-run noise and thus incorporates the short-

run information. Generally we can see, that the larger the scale the less volatile the

decomposed series gets. Technically speaking, scale 1 incorporates information and

noise of 2 days per observation, whereas scale 8 incorporates the noise of 256 days

per observation and thus the long run trend.

Figure 3: Decomposed Scales: 3M 2000-2013 !!DRAFT/BAD RESOLUTION!!

Note that the time scales are stochastically independent by construction, as illus-

trated in Table 2. In the empirical application, all correlations are close to zero so

that there is no significant linear dependence between the scales.

all other assets are not stated due to page constraints.
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Asset: 3M Scale 1 Scale 2 Scale 3 Scale 4 Scale 5 Scale 6 Scale 7 Scale 8

Scale 1 1,00 0,00 -0,02 0,03 0,00 0,02 0,00 0,00

Scale 2 1,00 -0,01 0,01 0,00 0,01 -0,01 0,00

Scale 3 1,00 -0,06 0,06 0,03 0,01 0,00

Scale 4 1,00 0,00 -0,03 0,02 0,01

Scale 5 1,00 -0,05 0,03 0,03

Scale 6 1,00 -0,03 -0,07

Scale 7 1,00 -0,06

Scale 8 1,00

Table 2: Correlation of Scales: 3M

As illustrated in Table 3, the volatility of the series is decomposed into eight

scales, whereas the volatility declines for larger scales. As can be seen, due to the

independence of the scales, the wavelet decomposition is ”energy preserving” so that

the variances of each scale sum up to the variance of the return series.

As well, the variance is mainly described by the first three scales, whereas the

last scales do only account for a small part. Economically speaking, most of the

risk is described by the short-run noise which is captured in the first three scales.

Consequently, in the context of forecasting, the first scales will be in scope of interest

and we will investigate how much information is needed to score adequate forecasts.

Asset: 3M

Variances [σ2 ∗ 107]

Returns Scale 1 Scale 2 Scale 3 Scale 4 Scale 5 Scale 6 Scale 7 Scale 8

1636 892 391 199 83 38 18 8 7

Variances for each scale are presented in the format σ2 ∗ 107.

Table 3: Variance of Scales: 3M

Thus, turning the focus to the evaluation of information in the context of fore-

casting, we treat every series independently to identify the incorporated information

content. So that, in order to filter the series at hand in terms of autocorrelation and

heteroscedasticity, the GJR-GARCH model is fitted to each return series and each

of its corresponding scale separately. For illustration purposes2, the relevant param-

eters for the individual asset 3M are presented. Table 4 states the GJR-GARCH
2Tables for each individual asset are available upon request to the author.
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parameters and the corresponding standard errors for each scale. Consequently, the

GJR-GARCH model is fitted to each of the 29 assets and the corresponding 8 scales.

As given in the example, we can see that the GARCH-parameters, α and β, are sig-

nificant for all scales. However, as a result of the decomposition β (accounting for

the persistency of the series) declines as the scale gets larger whereas α (accounting

for the shocks) increases remarkably. In the illustrated example, β decreases from

0,91 (returns) down to 0,07 (scale 7) and increases to 0,41 again (scale 8). However,

the increase in scale 8 can be explained by the long-run trend. As every observation

incorporates the information of 256 return observations, no clear distinction between

persistency and shock is possible. Interestingly, γ which accounts for the asymmetry

in the process, is significant in the first scale and the last three scales. This can be

explained by the fact that negative shocks are either relevant in the short run on an

ad-hoc basis as in the return series and scale 1 or, as more days are comprised by

the shock, if the shock can be interpreted as a negative market trend.

Asset: 3M

Parameters Returns S1 S2 S3 S4 S5 S6 S7 S8

Ω 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000

α 0,03 0,17 0,31 0,37 0,69 0,76 0,85 0,85 0,55

t-Value 452,89 306,38 391,72 482,31 491,36 558,04 580,50 808,87 576,68

β 0,91 0,77 0,65 0,58 0,16 0,17 0,11 0,07 0,41

t-Value 5141,06 1584,22 804,37 872,77 212,83 261,30 196,33 -963,75 1308,26

γ 0,07 0,03 0,00 0,00 0,00 0,00 0,01 0,03 0,08

t-Value 385,92 50,18 0,00 0,00 0,00 0,00 -16,37 42,08 79,64

LL 10055,60 11342,55 12650,55 14051,29 15596,95 17089,24 18520,67 20013,00 21709,81

Table 4: Estimated GJR-GARCH Parameters: 3M

Next, based on the filtered return series, to investigate the impact of the decom-

posed volatility on the forecasting of VaR, we translate the filtered return and scale

series into 95% VaR forecast. As we am explicitly interested in the left tails of each

time series, we do not assume any elliptical distribution and fit the Generalized

Pareto distribution to each of the individual return series and its corresponding 8

14



scales to model the 5% quantile for every series. Unlike in the elliptical case, VaR is

not a direct function of the volatility so that the individual VaRs for each scale do

not sum up to the total VaR. However, the results allow us to investigate the tail of

each series and thus the contribution to the overall VaR figure.

Returns Scale 1 Scale 2 Scale 3 Scale 4 Scale 5 Scale 6 Scale 7 Scale 8

3M -3,00% -1,22% -0,67% -0,47% -0,23% -0,11% -0,05% -0,03% -0,01%

AT&T -2,51% -1,11% -0,82% -0,53% -0,29% -0,13% -0,06% -0,03% -0,01%

AM EXP -5,43% -1,37% -1,10% -0,63% -0,40% -0,16% -0,09% -0,03% -0,01%

BOEING -3,48% -1,39% -0,97% -0,66% -0,32% -0,16% -0,07% -0,03% 0,01%

CATER -3,86% -1,55% -1,07% -0,65% -0,36% -0,17% -0,08% -0,03% 0,02%

CHEVR -2,91% -1,07% -0,77% -0,50% -0,28% -0,13% -0,06% -0,03% -0,01%

CISCO -7,40% -1,81% -1,27% -0,72% -0,45% -0,20% -0,10% -0,04% 0,01%

COCAC -3,11% -0,89% -0,57% -0,42% -0,20% -0,10% -0,05% -0,02% 0,01%

E I DU -3,88% -1,27% -0,89% -0,58% -0,32% -0,14% -0,07% -0,03% -0,01%

EXXON -3,10% -1,01% -0,75% -0,46% -0,26% -0,13% -0,06% -0,03% -0,01%

GE -4,01% -1,28% -0,76% -0,56% -0,33% -0,15% -0,07% -0,02% -0,01%

GOLDS -4,28% -1,77% -1,10% -0,75% -0,39% -0,19% -0,10% -0,04% 0,01%

HOME -5,97% -1,39% -0,87% -0,62% -0,34% -0,16% -0,07% -0,04% 0,00%

INTEL -4,79% -1,51% -1,09% -0,72% -0,43% -0,19% -0,10% -0,04% 0,02%

INTER -3,11% -1,14% -0,71% -0,51% -0,29% -0,13% -0,06% -0,03% -0,01%

JP M -5,83% -1,66% -1,04% -0,69% -0,43% -0,17% -0,09% -0,03% -0,01%

JJ -2,53% -0,85% -0,59% -0,36% -0,18% -0,09% -0,04% -0,02% 0,00%

MCD -3,58% -1,10% -0,77% -0,48% -0,26% -0,11% -0,06% -0,02% 0,00%

MERCK -3,66% -1,11% -0,81% -0,57% -0,28% -0,13% -0,07% -0,02% 0,00%

MS -5,48% -1,40% -0,89% -0,55% -0,34% -0,16% -0,07% -0,03% 0,00%

NIKE -3,43% -1,28% -0,83% -0,60% -0,30% -0,13% -0,07% -0,03% -0,01%

PFIZER -7,50% -1,20% -0,78% -0,53% -0,28% -0,13% -0,06% -0,03% -0,01%

P&G -3,42% -0,85% -0,60% -0,37% -0,19% -0,10% -0,05% -0,02% 0,00%

TRAV -4,41% -1,30% -0,86% -0,55% -0,31% -0,14% -0,07% -0,03% -0,01%

UT -3,78% -1,22% -0,81% -0,52% -0,26% -0,14% -0,06% -0,03% -0,01%

UNH -3,80% -1,38% -1,04% -0,60% -0,33% -0,15% -0,08% -0,04% -0,01%

VERI -3,84% -1,21% -0,79% -0,51% -0,27% -0,13% -0,05% -0,02% -0,01%

WAL -2,71% -1,04% -0,72% -0,46% -0,24% -0,12% -0,05% -0,03% -0,01%

WD -5,82% -1,34% -0,89% -0,63% -0,30% -0,14% -0,07% -0,03% -0,01%

Based on every single return series and individual scales, the 95% VaR is modeled.
VaR is modeled via GJR-GARCH approach and based on Generalized Pareto
Distribution. Every forecast is based on 3600 observations.

Table 5: 95% Value-at-Risk Forecasts per scale: All Assets

Table 4, summarizes the decomposed VaR forecasts for each asset and its cor-

responding decomposed scales. As already indicated by the decomposition of the

variance (illustrated in Table 3), the average VaR forecasts are declining for larger
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scales. Interestingly, by focusing on the VaR forecasts for the different assets, VaR

forecasts based on the return series vary stronger by each asset than the VaR figures

for, lets say, scale 1. For instance, the highest overall VaR forecast is given for Pfizer

and equals -7,50% and the corresponding VaR forecast based on the information ex-

clusively incorporated in scale 1 equals -1,20%. In comparison to this, the lowest

VaR forecast, given by AT&T, equals -2,51% and the corresponding VaR based on

scale 1 is given by -1,11%. This illustration underlines the independence of each

series, whereas it also shows, that the overall VaR forecasts seem to vary stronger

by each individual asset than the volatility which is captured in the short-run scales.

Consequently, the overall risk seems to depend more on the investigated asset

than the decomposed risk for each scale. More concrete, according to the stated

VaR figures, forecasts based on scale 1 do not vary as the VaR forecasts based on

the return series. Thus, all assets exhibit similar risk in the short-run, whereas the

overall risk figures based on the return series seem to be more individual. However,

analogue to the analysis of the variance, it is to state, that scale 1 - 4 seem to

incorporate most of the information regarding the risk, whereas the larger scales

appear to be of marginal impact regarding the overall VaR figure.

4 Value-at-Risk Analysis

To gain further insight into the information content of each time scale with respect

to risk related questions, we go on by setting up an empirical VaR forecasting study,

which enables us to judge the quality of the VaR forecasts based on different scales

and thus its individual information content. To do so, we investigate the quality of

VaR forecasts over time via a rolling window analysis. Namely, we model iterative

VaR forecasts on past 1000 days to forecast the 1001st. Starting from January 1st

2000, the first day to forecast is December 20th 2003 and the last day is September

30th 2013. It is to note, that the rolling window stays constant and each forecast is

based on the following steps:

i. Wavelet decomposition of 1000 observations

ii. Fitting GJR-Garch model to each series (returns and each of the 8 scales)
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iii. Fitting Generalized Pareto Distribution to each series to model the quantile

(Additionally we fit normal and t distribution as a benchmark)

iv. Compare VaR univariate forecast with the realized return, represented by the

1001st observation

v. As well, we link forecasts of different scales via t copula to analyse joint prob-

ability functions

Thus, this setup enables us to investigate 2600 VaR forecasts for each return series

and each of its corresponding scale. As we also investigate elliptical distributions,

to set the benchmark for our forecasts, we analyse more than 2 million daily VaR

forecasts in total3. In the context of this analysis, the main criterion will be the

failure rate of VaR misspecifications. As we forecast 95% VaR figures, we expect a

failure rate of 5%. Consequently, the failure rate will be the main quality criteria of

interest and thus VaR forecasts are preferred which result in an empirical rate close

to the expected 5%.

329 assets, 9 scales, 2600 days and 3 different distributional assumptions.
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Figure 4: 95% Value-at-Risk Forecasts !!!DRAFT!!!

Table 4 illustrates the methodology of VaR forecasts. Every forecast is evaluated

against the realized return, whereas a VaR breach is indicated if the negative return

is larger than the VaR forecast. As a benchmark for our VaR performance analysis

we also apply, lets say, classical parametric approaches by assuming normal as well

as t distribution for the underlying series. In this context, the VaR is simply the

square root of the GARCH-variance of the underlying time series multiplied by the

quantile of the assumed elliptical return distribution ( as presented in section 2.5).

However, for sake of page constrains, in the remainder of this chapter we will focus

on the most interesting results regarding VaR forecasts4. Namely, we present VaR

forecasts based on the benchmark (normal and t distribution) and on the information

of scale 1 modeled via GP distribution. As well, we present the effect of successively

adding the information which are given in the larger scales by joining the scales via

t copulas.

4All results are available upon request.
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Moreover, in order to start our analysis we separate the investigated sample into

a pre-crisis and post-crisis subsample, whereas we use the Lehman bankruptcy

(September 15th 2008) as the starting point of the post-crisis subsample. Conse-

quently, the pre-crisis sample covers 1026 days and the post-crisis sample 1574 days.

We do so to take account for the changed market regimes and to avoid that con-

servative forecasts in calm market phases are compensated with breaches in volatile

market phases as presented in Berger & Missong (2013).

Asset Gauss t GPD

3M Returns Returns Scale 1 Scale 1&2 Scale 1&2&3

Pre-Crisis 3, 54%∗∗ 2, 42%∗∗ 10, 34%∗∗ 5,77% 4,19%

Post-Crisis 5,50% 4,30% 10, 70%∗∗ 7, 08%∗∗ 5,88%

Total 4,63% 3, 46%∗ 10, 54%∗∗ 6, 50%∗∗ 5,13%

The percentages represent the relative amount of VaR breaches for the investigated
period, return distribution and data (either returns or scales). ∗/∗∗

indicate a rejection of the LRCC-hypothesis at a 95%/99% significance level.

95% Value-at-Risk Empirical Failure Rate: 3M 2000-2013

Table 4 summarizes the relevant statistics, namely the empirical failure rate of

the VaR forecasts, for 3M. Results regarding the VaR forecasts are given for the pre-

and post-crisis as well as for the total sample5. We present the empirical failure rate

for the two benchmark models, namely VaR forecasts based on the filtered return

series under the assumption of normally and t-distributed returns. As well we show

VaR forecasts based on scale 1, scale 1 and scale 2 linked via t copula and scale 1,

scale 2 and scale 3 as well linked via t copula6.

First and foremost it is to say, that the assumption of normally distributed returns

leads to an acceptable performance if we solely focus on the empirical failure rate

for the total sample (4,63%), whereas the assumption of t-distribution leads to too

conservative VaR forecasts and thus less breaches (3,46%). However, if we investigate

the predefined subsamples, we observe different performance, due to lower volatility

regime in the pre-crisis period.

5Statistics for all investigated assets are available upon request
6It is to note, that forecasts i.e. based on scale 1, are benchmarked against the realized gains and

losses stemming from the return series.
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The second part of the Table illustrates the successive addition of information,

starting from scale 1. We present the VaR forecasts, based on different time scales

under the assumption of GP distributed returns. As can be seen, VaR forecasts

solely based on scale 1 do lead to an inadequately high amount of VaR exceedam-

ces. Having in mind that the VaR forecasts decline by larger scales, it gets clear

that forecasts based on individual scales do not lead to adequate amount of mis-

specifications. Thus there is no scale, which incorporates all information needed to

forecast daily volatility. However, successively adding information to the first scale,

by joining the VaR forecasts based on scale 2 via t copula, results in a decreased

failure rate. If we also add the information incorporated in scale 3, we end up in a

failure rate which is described by a higher precision than the applied benchmarks.

If we continue by successively adding more scales (which is not presented here), we

result in slightly too conservative VaR forecasts.

Next, in order to show the validity of the results, we go on by presenting the

relevant empirical failure rates for the two benchmark approaches and the three

joint scales, for each of the investigated assets in Table 6.
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Gauss t GPD Gauss t GPD

Asset Returns Returns Scale 1&2&3 Asset Returns Returns Scale 1&2&3

3M 4,63% 3, 46∗% 5,13% JP M 4,79% 3, 71%∗∗ 5,04%

AT&T 4,29% 3,46% 4,96% JJ 3, 58%∗∗ 2, 88%∗∗ 4,46%

AM EXP 5,00% 3, 50%∗∗ 5,50% MCD 3, 83%∗∗ 2, 67%∗ 4,00%

BOEING 4,83% 3, 79%∗ 5,00% MERCK 3, 25%∗∗ 2, 92%∗∗ 4,54%

CATER 5,04% 3, 50%∗ 5,04% MS 4,42% 3, 38%∗ 5,21%

CHEVR 6, 21%∗∗ 4,96% 6,13% NIKE 3, 79%∗ 3, 13%∗∗ 4,58%

CISCO 3, 83%∗∗ 2, 83%∗∗ 4,67% PFIZER 4, 04%∗ 3, 13%∗∗ 4,88%

COCAC 4,38% 3, 21%∗ 5,08% P&G 5,08% 3,92% 5,04%

E I DU 4,58% 3, 75%∗∗ 5,33% TRAV 4, 00%∗ 3, 00%∗∗ 4,96%

EXXON 5,50% 4, 58%∗ 6, 04%∗ UT 4,33% 3, 58%∗∗ 5,33%

GE 4,67% 3, 42%∗∗ 5,54% UNH 4,46% 3, 38%∗∗ 5,25%

GOLDS 4,75% 3, 67%∗∗ 4,75% VERI 4,75% 3, 83%∗ 5,04%

HOME 4,29% 3, 29%∗∗ 4,88% WAL 4,92% 3,92% 4,79%

INTEL 4,50% 3, 29%∗∗ 4,92% WD 4,46% 3, 54∗∗% 5,50%

INTER 4,63% 3, 67%∗ 4,83%

The percentages represent the relative amount of VaR breaches for the investigated period, return
distribution and data (either returns or scales linked via copula. The superior ampount of
breaches for each stock is market in bold. ∗/∗∗ indicate a rejection of the LRCC-hypothesis
at a 95%/99% significance level.

Table 6: Empirical Value-at-Risk Failure Rate: All Assets 2000-2013

By comparing the overall results, we see that VaR forecasts based on the assump-

tion of normally distributed returns do only lead to more precise forecasts for 3

assets (Caterpillar, General Electrics and Goldman Sachs). Analogue, the assump-

tion of t distribution leads for two assets to more precise VaR forecast (Exxon and

Wal Mart). Hence, VaR forecasts based on the first three scales, modeled via GPD

and linked via t copula do clearly outperform the elliptical benchmark in terms of

precision. Consequently, the first three scales of each return series incorporate the

necessary information to forecast daily VaR.
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5 Conclusion

We decomposed financial return series into different time scales and investigated the

information content of each time scale in a VaR framework. The empirical data set

comprises daily returns of stocks listed in the Dow Jones Industrial Average from

2000 to 2013.

Based on the decomposed series, we fit GPD to each scale and demonstrate that

the relevant information regarding daily VaR forecasts is captured in the scales

comprising the short-run stochastic behavior of the series. Moreover, individual

VaR forecasts based on filtered return series vary stronger by each individual asset

than the VaR forecasts based on different time scales. The main information con-

cerning VaR forecasts is inherent in the first three time scales, whereas the long-run

information contributes only marginally to the overall VaR figure.

Further, we add to the analysis of decomposed return series by investigating the

empirical quality of VaR forecasts for each scale. Moreover, we linked individual

scales using elliptical copulas. By successively adding the information of larger

scales to the VaR forecasts, we show that the relevant information for daily VaR

forecasts seems to be captured by the first three scales.

We find that the information of the first scales linked via copulas outperformed

the applied parametric benchmark approaches based on the assumption of normally

and t distributed returns. Thus, combining the VaR forecasts, modeled via Extreme

Value Theory, of the first three scales via t copula leads to VaR forecast which are

described by a higher precision regarding the empirical failure rates in calm and

turmoil market times for all investigated assets.

Based on our results, we illustrated that the relevant information for daily VaR

forecasts is stored in the time scales comprising the short-run trend. Consequently,

we strongly recommend to model daily VaR forecasts by capturing the VaR of the

low time scales joint via copulas in order to achieve precise daily VaR forecasts.
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